


GST Tag Antibody [clone 9AT106] (F52060)

Catalog No.	Formulation	Size
F52060-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F52060-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml

Bulk quote request

Availability	1-3 business days
Format	Purified
Clonality	Monoclonal (mouse origin)
Isotype	Mouse IgG1
Clone Name	9AT106
Purity	Purified
Applications	Western Blot : 1:1000-2000
Limitations	This GST Tag antibody is available for research use only.

Description

Glutathione S-transferase (GST) was originally cloned from parasite Schistosoma japonicum and it is now a widely used protein fusion partner. Vectors containing GST Tag have been developed for both prokaryotic and eukaryotic systems.

The GST fusion proteins are easily purified from cell lysates by affinity chromatography using Glutathione Sepharose 4B to elute out the GST fusion protein from the column with a denaturing form of glutathione. Using the NSJBio anti-GST antibody provides a simple solution to detect the expression of GST fusion proteins in cells.

Application Notes

Titration of the GST Tag antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

Purified recombinant fusion protein was used to produced this monoclonal GST tag antibody.

Storage

Aliquot the GST Tag antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.