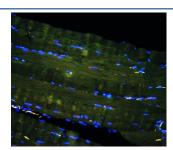
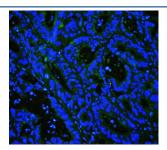
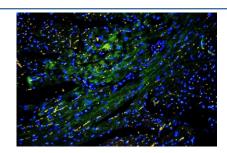


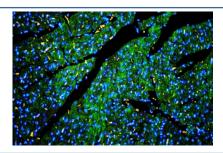
Caveolin-3 Antibody / CAV3 (RQ4913)

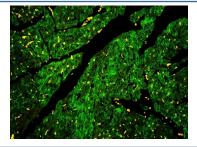

Catalog No.	Formulation	Size
RQ4913	0.5mg/ml if reconstituted with 0.2ml sterile DI water	100 ug

Bulk quote request


Availability	1-3 business days
Species Reactivity	Human, Mouse, Rat
Format	Antigen affinity purified
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit IgG
Purity	Antigen affinity purified
Buffer	Lyophilized from 1X PBS with 2% Trehalose and 0.025% sodium azide
UniProt	P56539
Localization	Cytoplasmic, plasma membrane
Applications	Western Blot : 0.5-1ug/ml Immunohistochemistry (FFPE) : 1-2ug/ml Direct ELISA : 0.1-0.5ug/ml
Limitations	This Caveolin-3 antibody is available for research use only.


Western blot testing of 1) human placenta, 2) U-87 MG, 3) human HeLa, 4) rat stomach, 5) rat testis, 6) mouse stomach and 7) mouse testis lysate with Caveolin-3 antibody at 0.5ug/ml. Predicted molecular weight: ~17 kDa but routinely observed at 20~25 kDa.


IHC staining of FFPE human skeletal muscle with Caveolin-3 antibody at 1ug/ml (green) and DAPI nuclear stain (blue). HIER: boil tissue sections in pH6, 10mM citrate buffer, for 10-20 min and allow to cool before testing.


IHC staining of FFPE human intestinal cancer with Caveolin-3 antibody at 1ug/ml (green) and DAPI nuclear stain (blue). HIER: boil tissue sections in pH6, 10mM citrate buffer, for 10-20 min and allow to cool before testing.

IHC staining of FFPE mouse heart with Caveolin-3 antibody at 1ug/ml (green) and DAPI nuclear stain (blue). HIER: boil tissue sections in pH6, 10mM citrate buffer, for 10-20 min and allow to cool before testing.

IHC staining of FFPE rat heart with Caveolin-3 antibody at 1ug/ml (green) and DAPI nuclear stain (blue). HIER: boil tissue sections in pH6, 10mM citrate buffer, for 10-20 min and allow to cool before testing.

IHC staining of FFPE rat heart with Caveolin-3 antibody at 1ug/ml. HIER: boil tissue sections in pH6, 10mM citrate buffer, for 10-20 min and allow to cool before testing.

Description

Caveolin-3 is a protein that in humans is encoded by the CAV3 gene. This gene encodes a caveolin family member, which functions as a component of the caveolae plasma membranes found in most cell types. Caveolin proteins are proposed to be scaffolding proteins for organizing and concentrating certain caveolin-interacting molecules. Mutations identified in this gene lead to interference with protein oligomerization or intra-cellular routing, disrupting caveolae formation and resulting in Limb-Girdle muscular dystrophy type-1C (LGMD-1C), hyperCKemia or rippling muscle disease (RMD). Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites and contain two potential translation initiation sites.

Application Notes

Optimal dilution of the Caveolin-3 antibody should be determined by the researcher.

Immunogen

Amino acids M1-D55 from the human protein were used as the immunogen for the Caveolin-3 antibody.

Storage

After reconstitution, the Caveolin-3 antibody can be stored for up to one month at 4oC. For long-term, aliq -20oC. Avoid repeated freezing and thawing.	uot and store at